
13
INTRODUCTION TO

QUERY OPTIMIZATION

This very remarkable man

Commends a most practical plan:

You can do what you want

If you don’t think you can’t,

So don’t think you can’t if you can.

—Charles Inge

Consider a simple selection query asking for all reservations made by sailor Joe. As we

saw in the previous chapter, there are many ways to evaluate even this simple query,

each of which is superior in certain situations, and the DBMS must consider these

alternatives and choose the one with the least estimated cost. Queries that consist

of several operations have many more evaluation options, and finding a good plan

represents a significant challenge.

A more detailed view of the query optimization and execution layer in the DBMS

architecture presented in Section 1.8 is shown in Figure 13.1. Queries are parsed and

then presented to a query optimizer, which is responsible for identifying an efficient

execution plan for evaluating the query. The optimizer generates alternative plans and

chooses the plan with the least estimated cost. To estimate the cost of a plan, the

optimizer uses information in the system catalogs.

This chapter presents an overview of query optimization, some relevant background

information, and a case study that illustrates and motivates query optimization. We

discuss relational query optimizers in detail in Chapter 14.

Section 13.1 lays the foundation for our discussion. It introduces query evaluation

plans, which are composed of relational operators; considers alternative techniques

for passing results between relational operators in a plan; and describes an iterator

interface that makes it easy to combine code for individual relational operators into

an executable plan. In Section 13.2, we describe the system catalogs for a relational

DBMS. The catalogs contain the information needed by the optimizer to choose be-

tween alternate plans for a given query. Since the costs of alternative plans for a given

query can vary by orders of magnitude, the choice of query evaluation plan can have

a dramatic impact on execution time. We illustrate the differences in cost between

alternative plans through a detailed motivating example in Section 13.3.

359



360 Chapter 13

Generator Estimator

Plan CostPlan

Query Plan Evaluator

Query Optimizer

Query Parser

Manager

Catalog

Evaluation plan

Parsed query

Query

Figure 13.1 Query Parsing, Optimization, and Execution

We will consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Reserves(sid: integer, bid: integer, day: dates, rname: string)

As in Chapter 12, we will assume that each tuple of Reserves is 40 bytes long, that

a page can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples.

Similarly, we will assume that each tuple of Sailors is 50 bytes long, that a page can

hold 80 Sailors tuples, and that we have 500 pages of such tuples.

13.1 OVERVIEW OF RELATIONAL QUERY OPTIMIZATION

The goal of a query optimizer is to find a good evaluation plan for a given query. The

space of plans considered by a typical relational query optimizer can be understood

by recognizing that a query is essentially treated as a σ − π − × algebra expression,

with the remaining operations (if any, in a given query) carried out on the result of

the σ−π−× expression. Optimizing such a relational algebra expression involves two

basic steps:

Enumerating alternative plans for evaluating the expression; typically, an opti-

mizer considers a subset of all possible plans because the number of possible plans

is very large.

Estimating the cost of each enumerated plan, and choosing the plan with the least

estimated cost.



Introduction to Query Optimization 361

Commercial optimizers: Current RDBMS optimizers are complex pieces of

software with many closely guarded details and typically represent 40 to 50 man-

years of development effort!

In this section we lay the foundation for our discussion of query optimization by in-

troducing evaluation plans. We conclude this section by highlighting IBM’s System R

optimizer, which influenced subsequent relational optimizers.

13.1.1 Query Evaluation Plans

A query evaluation plan (or simply plan) consists of an extended relational algebra

tree, with additional annotations at each node indicating the access methods to use

for each relation and the implementation method to use for each relational operator.

Consider the following SQL query:

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid = S.sid

AND R.bid = 100 AND S.rating > 5

This query can be expressed in relational algebra as follows:

πsname(σbid=100∧rating>5(Reserves⊲⊳sid=sidSailors))

This expression is shown in the form of a tree in Figure 13.2. The algebra expression

partially specifies how to evaluate the query—we first compute the natural join of

Reserves and Sailors, then perform the selections, and finally project the sname field.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Figure 13.2 Query Expressed as a Relational Algebra Tree

To obtain a fully specified evaluation plan, we must decide on an implementation for

each of the algebra operations involved. For example, we can use a page-oriented



362 Chapter 13

simple nested loops join with Reserves as the outer relation and apply selections and

projections to each tuple in the result of the join as it is produced; the result of the

join before the selections and projections is never stored in its entirety. This query

evaluation plan is shown in Figure 13.3.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(On-the-fly)

(On-the-fly)

(Simple nested loops)

(File scan)(File scan)

Figure 13.3 Query Evaluation Plan for Sample Query

In drawing the query evaluation plan, we have used the convention that the outer

relation is the left child of the join operator. We will adopt this convention henceforth.

13.1.2 Pipelined Evaluation

When a query is composed of several operators, the result of one operator is sometimes

pipelined to another operator without creating a temporary relation to hold the

intermediate result. The plan in Figure 13.3 pipelines the output of the join of Sailors

and Reserves into the selections and projections that follow. Pipelining the output

of an operator into the next operator saves the cost of writing out the intermediate

result and reading it back in, and the cost savings can be significant. If the output of

an operator is saved in a temporary relation for processing by the next operator, we

say that the tuples are materialized. Pipelined evaluation has lower overhead costs

than materialization and is chosen whenever the algorithm for the operator evaluation

permits it.

There are many opportunities for pipelining in typical query plans, even simple plans

that involve only selections. Consider a selection query in which only part of the se-

lection condition matches an index. We can think of such a query as containing two

instances of the selection operator: The first contains the primary, or matching, part

of the original selection condition, and the second contains the rest of the selection

condition. We can evaluate such a query by applying the primary selection and writ-

ing the result to a temporary relation and then applying the second selection to the

temporary relation. In contrast, a pipelined evaluation consists of applying the second

selection to each tuple in the result of the primary selection as it is produced and

adding tuples that qualify to the final result. When the input relation to a unary



Introduction to Query Optimization 363

operator (e.g., selection or projection) is pipelined into it, we sometimes say that the

operator is applied on-the-fly.

As a second and more general example, consider a join of the form (A ⊲⊳ B) ⊲⊳ C,

shown in Figure 13.4 as a tree of join operations.

Result tuples
of first join
pipelined into
join with C

A B

C

Figure 13.4 A Query Tree Illustrating Pipelining

Both joins can be evaluated in pipelined fashion using some version of a nested loops

join. Conceptually, the evaluation is initiated from the root, and the node joining A

and B produces tuples as and when they are requested by its parent node. When the

root node gets a page of tuples from its left child (the outer relation), all the matching

inner tuples are retrieved (using either an index or a scan) and joined with matching

outer tuples; the current page of outer tuples is then discarded. A request is then made

to the left child for the next page of tuples, and the process is repeated. Pipelined

evaluation is thus a control strategy governing the rate at which different joins in the

plan proceed. It has the great virtue of not writing the result of intermediate joins to

a temporary file because the results are produced, consumed, and discarded one page

at a time.

13.1.3 The Iterator Interface for Operators and Access Methods

A query evaluation plan is a tree of relational operators and is executed by calling the

operators in some (possibly interleaved) order. Each operator has one or more inputs

and an output, which are also nodes in the plan, and tuples must be passed between

operators according to the plan’s tree structure.

In order to simplify the code that is responsible for coordinating the execution of a plan,

the relational operators that form the nodes of a plan tree (which is to be evaluated

using pipelining) typically support a uniform iterator interface, hiding the internal

implementation details of each operator. The iterator interface for an operator includes

the functions open, get next, and close. The open function initializes the state of

the iterator by allocating buffers for its inputs and output, and is also used to pass

in arguments such as selection conditions that modify the behavior of the operator.

The code for the get next function calls the get next function on each input node and

calls operator-specific code to process the input tuples. The output tuples generated

by the processing are placed in the output buffer of the operator, and the state of



364 Chapter 13

the iterator is updated to keep track of how much input has been consumed. When

all output tuples have been produced through repeated calls to get next, the close

function is called (by the code that initiated execution of this operator) to deallocate

state information.

The iterator interface supports pipelining of results naturally; the decision to pipeline

or materialize input tuples is encapsulated in the operator-specific code that processes

input tuples. If the algorithm implemented for the operator allows input tuples to

be processed completely when they are received, input tuples are not materialized

and the evaluation is pipelined. If the algorithm examines the same input tuples

several times, they are materialized. This decision, like other details of the operator’s

implementation, is hidden by the iterator interface for the operator.

The iterator interface is also used to encapsulate access methods such as B+ trees and

hash-based indexes. Externally, access methods can be viewed simply as operators

that produce a stream of output tuples. In this case, the open function can be used to

pass the selection conditions that match the access path.

13.1.4 The System R Optimizer

Current relational query optimizers have been greatly influenced by choices made in

the design of IBM’s System R query optimizer. Important design choices in the System

R optimizer include:

1. The use of statistics about the database instance to estimate the cost of a query

evaluation plan.

2. A decision to consider only plans with binary joins in which the inner relation

is a base relation (i.e., not a temporary relation). This heuristic reduces the

(potentially very large) number of alternative plans that must be considered.

3. A decision to focus optimization on the class of SQL queries without nesting and

to treat nested queries in a relatively ad hoc way.

4. A decision not to perform duplicate elimination for projections (except as a final

step in the query evaluation when required by a DISTINCT clause).

5. A model of cost that accounted for CPU costs as well as I/O costs.

Our discussion of optimization reflects these design choices, except for the last point

in the preceding list, which we ignore in order to retain our simple cost model based

on the number of page I/Os.



Introduction to Query Optimization 365

13.2 SYSTEM CATALOG IN A RELATIONAL DBMS

We can store a relation using one of several alternative file structures, and we can

create one or more indexes—each stored as a file—on every relation. Conversely, in a

relational DBMS, every file contains either the tuples in a relation or the entries in an

index. The collection of files corresponding to users’ relations and indexes represents

the data in the database.

A fundamental property of a database system is that it maintains a description of

all the data that it contains. A relational DBMS maintains information about every

relation and index that it contains. The DBMS also maintains information about

views, for which no tuples are stored explicitly; rather, a definition of the view is

stored and used to compute the tuples that belong in the view when the view is

queried. This information is stored in a collection of relations, maintained by the

system, called the catalog relations; an example of a catalog relation is shown in

Figure 13.5. The catalog relations are also called the system catalog, the catalog,

or the data dictionary. The system catalog is sometimes referred to as metadata;

that is, not data, but descriptive information about the data. The information in the

system catalog is used extensively for query optimization.

13.2.1 Information Stored in the System Catalog

Let us consider what is stored in the system catalog. At a minimum we have system-

wide information, such as the size of the buffer pool and the page size, and the following

information about individual relations, indexes, and views:

For each relation:

– Its relation name, the file name (or some identifier), and the file structure

(e.g., heap file) of the file in which it is stored.

– The attribute name and type of each of its attributes.

– The index name of each index on the relation.

– The integrity constraints (e.g., primary key and foreign key constraints) on

the relation.

For each index:

– The index name and the structure (e.g., B+ tree) of the index.

– The search key attributes.

For each view:

– Its view name and definition.



366 Chapter 13

In addition, statistics about relations and indexes are stored in the system catalogs

and updated periodically (not every time the underlying relations are modified). The

following information is commonly stored:

Cardinality: The number of tuples NTuples(R) for each relation R.

Size: The number of pages NPages(R) for each relation R.

Index Cardinality: Number of distinct key values NKeys(I) for each index I.

Index Size: The number of pages INPages(I) for each index I. (For a B+ tree

index I, we will take INPages to be the number of leaf pages.)

Index Height: The number of nonleaf levels IHeight(I) for each tree index I.

Index Range: The minimum present key value ILow(I) and the maximum

present key value IHigh(I) for each index I.

We will assume that the database architecture presented in Chapter 1 is used. Further,

we assume that each file of records is implemented as a separate file of pages. Other file

organizations are possible, of course. For example, in System R a page file can contain

pages that store records from more than one record file. (System R uses different names

for these abstractions and in fact uses somewhat different abstractions.) If such a file

organization is used, additional statistics must be maintained, such as the fraction of

pages in a file that contain records from a given collection of records.

The catalogs also contain information about users, such as accounting information and

authorization information (e.g., Joe User can modify the Enrolled relation, but only

read the Faculty relation).

How Catalogs are Stored

A very elegant aspect of a relational DBMS is that the system catalog is itself a

collection of relations. For example, we might store information about the attributes

of relations in a catalog relation called Attribute Cat:

Attribute Cat(attr name: string, rel name: string,

type: string, position: integer)

Suppose that the database contains two relations:

Students(sid: string, name: string, login: string,

age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)



Introduction to Query Optimization 367

Figure 13.5 shows the tuples in the Attribute Cat relation that describe the attributes

of these two relations. Notice that in addition to the tuples describing Students and

Faculty, other tuples (the first four listed) describe the four attributes of the At-

tribute Cat relation itself! These other tuples illustrate an important point: the cata-

log relations describe all the relations in the database, including the catalog relations

themselves. When information about a relation is needed, it is obtained from the

system catalog. Of course, at the implementation level, whenever the DBMS needs

to find the schema of a catalog relation, the code that retrieves this information must

be handled specially. (Otherwise, this code would have to retrieve this information

from the catalog relations without, presumably, knowing the schema of the catalog

relations!)

attr name rel name type position

attr name Attribute cat string 1

rel name Attribute cat string 2

type Attribute cat string 3

position Attribute cat integer 4

sid Students string 1

name Students string 2

login Students string 3

age Students integer 4

gpa Students real 5

fid Faculty string 1

fname Faculty string 2

sal Faculty real 3

Figure 13.5 An Instance of the Attribute Cat Relation

The fact that the system catalog is also a collection of relations is very useful. For

example, catalog relations can be queried just like any other relation, using the query

language of the DBMS! Further, all the techniques available for implementing and

managing relations apply directly to catalog relations. The choice of catalog relations

and their schemas is not unique and is made by the implementor of the DBMS. Real

systems vary in their catalog schema design, but the catalog is always implemented as a

collection of relations, and it essentially describes all the data stored in the database.1

1Some systems may store additional information in a non-relational form. For example, a system

with a sophisticated query optimizer may maintain histograms or other statistical information about

the distribution of values in certain attributes of a relation. We can think of such information, when

it is maintained, as a supplement to the catalog relations.



368 Chapter 13

13.3 ALTERNATIVE PLANS: A MOTIVATING EXAMPLE

Consider the example query from Section 13.1. Let us consider the cost of evaluating

the plan shown in Figure 13.3. The cost of the join is 1, 000 + 1, 000 ∗ 500 = 501, 000

page I/Os. The selections and the projection are done on-the-fly and do not incur

additional I/Os. Following the cost convention described in Section 12.1.2, we ignore

the cost of writing out the final result. The total cost of this plan is therefore 501,000

page I/Os. This plan is admittedly naive; however, it is possible to be even more naive

by treating the join as a cross-product followed by a selection!

We now consider several alternative plans for evaluating this query. Each alternative

improves on the original plan in a different way and introduces some optimization ideas

that are examined in more detail in the rest of this chapter.

13.3.1 Pushing Selections

A join is a relatively expensive operation, and a good heuristic is to reduce the sizes of

the relations to be joined as much as possible. One approach is to apply selections early;

if a selection operator appears after a join operator, it is worth examining whether the

selection can be ‘pushed’ ahead of the join. As an example, the selection bid=100

involves only the attributes of Reserves and can be applied to Reserves before the join.

Similarly, the selection rating> 5 involves only attributes of Sailors and can be applied

to Sailors before the join. Let us suppose that the selections are performed using a

simple file scan, that the result of each selection is written to a temporary relation on

disk, and that the temporary relations are then joined using a sort-merge join. The

resulting query evaluation plan is shown in Figure 13.6.

Reserves Sailors

sid=sid

bid=100 

sname

rating > 5
(Scan;
write to 
temp T1)

(Sort-merge join)

(On-the-fly)

(Scan;
write to
temp T2)

File scanFile scan

Figure 13.6 A Second Query Evaluation Plan

Let us assume that five buffer pages are available and estimate the cost of this query

evaluation plan. (It is likely that more buffer pages will be available in practice. We



Introduction to Query Optimization 369

have chosen a small number simply for illustration purposes in this example.) The

cost of applying bid=100 to Reserves is the cost of scanning Reserves (1,000 pages)

plus the cost of writing the result to a temporary relation, say T1. Note that the

cost of writing the temporary relation cannot be ignored—we can only ignore the cost

of writing out the final result of the query, which is the only component of the cost

that is the same for all plans, according to the convention described in Section 12.1.2.

To estimate the size of T1, we require some additional information. For example, if

we assume that the maximum number of reservations of a given boat is one, just one

tuple appears in the result. Alternatively, if we know that there are 100 boats, we can

assume that reservations are spread out uniformly across all boats and estimate the

number of pages in T1 to be 10. For concreteness, let us assume that the number of

pages in T1 is indeed 10.

The cost of applying rating> 5 to Sailors is the cost of scanning Sailors (500 pages)

plus the cost of writing out the result to a temporary relation, say T2. If we assume

that ratings are uniformly distributed over the range 1 to 10, we can approximately

estimate the size of T2 as 250 pages.

To do a sort-merge join of T1 and T2, let us assume that a straightforward implemen-

tation is used in which the two relations are first completely sorted and then merged.

Since five buffer pages are available, we can sort T1 (which has 10 pages) in two passes.

Two runs of five pages each are produced in the first pass and these are merged in the

second pass. In each pass, we read and write 10 pages; thus, the cost of sorting T1 is

2 ∗ 2 ∗ 10 = 40 page I/Os. We need four passes to sort T2, which has 250 pages. The

cost is 2 ∗ 4 ∗ 250 = 2, 000 page I/Os. To merge the sorted versions of T1 and T2, we

need to scan these relations, and the cost of this step is 10 + 250 = 260. The final

projection is done on-the-fly, and by convention we ignore the cost of writing the final

result.

The total cost of the plan shown in Figure 13.6 is the sum of the cost of the selection

(1, 000 + 10 + 500 + 250 = 1, 760) and the cost of the join (40 + 2, 000 + 260 = 2, 300),

that is, 4,060 page I/Os.

Sort-merge join is one of several join methods. We may be able to reduce the cost of

this plan by choosing a different join method. As an alternative, suppose that we used

block nested loops join instead of sort-merge join. Using T1 as the outer relation, for

every three-page block of T1, we scan all of T2; thus, we scan T2 four times. The

cost of the join is therefore the cost of scanning T1 (10) plus the cost of scanning T2

(4 ∗ 250 = 1, 000). The cost of the plan is now 1, 760 + 1, 010 = 2, 770 page I/Os.

A further refinement is to push the projection, just like we pushed the selections past

the join. Observe that only the sid attribute of T1 and the sid and sname attributes of

T2 are really required. As we scan Reserves and Sailors to do the selections, we could

also eliminate unwanted columns. This on-the-fly projection reduces the sizes of the



370 Chapter 13

temporary relations T1 and T2. The reduction in the size of T1 is substantial because

only an integer field is retained. In fact, T1 will now fit within three buffer pages, and

we can perform a block nested loops join with a single scan of T2. The cost of the join

step thus drops to under 250 page I/Os, and the total cost of the plan drops to about

2,000 I/Os.

13.3.2 Using Indexes

If indexes are available on the Reserves and Sailors relations, even better query evalua-

tion plans may be available. For example, suppose that we have a clustered static hash

index on the bid field of Reserves and another hash index on the sid field of Sailors.

We can then use the query evaluation plan shown in Figure 13.7.

Reserves

Sailors

sid=sid

bid=100 

sname

rating > 5

(On-the-fly)

(On-the-fly)

(Index nested loops,
with pipelining )

(Use hash
index; do
not write
result to 
temp)

Hash index on bid

Hash index on sid

Figure 13.7 A Query Evaluation Plan Using Indexes

The selection bid=100 is performed on Reserves by using the hash index on bid to

retrieve only matching tuples. As before, if we know that 100 boats are available and

assume that reservations are spread out uniformly across all boats, we can estimate

the number of selected tuples to be 100, 000/100 = 1, 000. Since the index on bid is

clustered, these 1,000 tuples appear consecutively within the same bucket; thus, the

cost is 10 page I/Os.

For each selected tuple, we retrieve matching Sailors tuples using the hash index on

the sid field; selected Reserves tuples are not materialized and the join is pipelined.

For each tuple in the result of the join, we perform the selection rating>5 and the

projection of sname on-the-fly. There are several important points to note here:

1. Since the result of the selection on Reserves is not materialized, the optimization

of projecting out fields that are not needed subsequently is unnecessary (and is

not used in the plan shown in Figure 13.7).



Introduction to Query Optimization 371

2. The join field sid is a key for Sailors. Therefore, at most one Sailors tuple matches

a given Reserves tuple. The cost of retrieving this matching tuple depends on

whether the directory of the hash index on the sid column of Sailors fits in memory

and on the presence of overflow pages (if any). However, the cost does not depend

on whether this index is clustered because there is at most one matching Sailors

tuple and requests for Sailors tuples are made in random order by sid (because

Reserves tuples are retrieved by bid and are therefore considered in random order

by sid). For a hash index, 1.2 page I/Os (on average) is a good estimate of the

cost for retrieving a data entry. Assuming that the sid hash index on Sailors uses

Alternative (1) for data entries, 1.2 I/Os is the cost to retrieve a matching Sailors

tuple (and if one of the other two alternatives is used, the cost would be 2.2 I/Os).

3. We have chosen not to push the selection rating>5 ahead of the join, and there is

an important reason for this decision. If we performed the selection before the join,

the selection would involve scanning Sailors, assuming that no index is available

on the rating field of Sailors. Further, whether or not such an index is available,

once we apply such a selection, we do not have an index on the sid field of the

result of the selection (unless we choose to build such an index solely for the sake

of the subsequent join). Thus, pushing selections ahead of joins is a good heuristic,

but not always the best strategy. Typically, as in this example, the existence of

useful indexes is the reason that a selection is not pushed. (Otherwise, selections

are pushed.)

Let us estimate the cost of the plan shown in Figure 13.7. The selection of Reserves

tuples costs 10 I/Os, as we saw earlier. There are 1,000 such tuples, and for each the

cost of finding the matching Sailors tuple is 1.2 I/Os, on average. The cost of this

step (the join) is therefore 1,200 I/Os. All remaining selections and projections are

performed on-the-fly. The total cost of the plan is 1,210 I/Os.

As noted earlier, this plan does not utilize clustering of the Sailors index. The plan

can be further refined if the index on the sid field of Sailors is clustered. Suppose we

materialize the result of performing the selection bid=100 on Reserves and sort this

temporary relation. This relation contains 10 pages. Selecting the tuples costs 10 page

I/Os (as before), writing out the result to a temporary relation costs another 10 I/Os,

and with five buffer pages, sorting this temporary costs 2∗ 2 ∗ 10 = 40 I/Os. (The cost

of this step is reduced if we push the projection on sid. The sid column of materialized

Reserves tuples requires only three pages and can be sorted in memory with five buffer

pages.) The selected Reserves tuples can now be retrieved in order by sid.

If a sailor has reserved the same boat many times, all corresponding Reserves tuples

are now retrieved consecutively; the matching Sailors tuple will be found in the buffer

pool on all but the first request for it. This improved plan also demonstrates that

pipelining is not always the best strategy.



372 Chapter 13

The combination of pushing selections and using indexes that is illustrated by this plan

is very powerful. If the selected tuples from the outer relation join with a single inner

tuple, the join operation may become trivial, and the performance gains with respect

to the naive plan shown in Figure 13.6 are even more dramatic. The following variant

of our example query illustrates this situation:

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid = S.sid

AND R.bid = 100 AND S.rating > 5

AND R.day = ‘8/9/94’

A slight variant of the plan shown in Figure 13.7, designed to answer this query, is

shown in Figure 13.8. The selection day=‘8/9/94’ is applied on-the-fly to the result of

the selection bid=100 on the Reserves relation.

(Use hash
index; do
not write
result to 
temp)

Sailors

sid=sid

sname

rating > 5

Reserves

bid=100 

day=’8/9/94’

(On-the-fly)

(On-the-fly)

(Index nested loops,
with pipelining )

(On-the-fly)
Hash index on sid

Hash index on bid

Figure 13.8 A Query Evaluation Plan for the Second Example

Suppose that bid and day form a key for Reserves. (Note that this assumption differs

from the schema presented earlier in this chapter.) Let us estimate the cost of the plan

shown in Figure 13.8. The selection bid=100 costs 10 page I/Os, as before, and the

additional selection day=‘8/9/94’ is applied on-the-fly, eliminating all but (at most)

one Reserves tuple. There is at most one matching Sailors tuple, and this is retrieved

in 1.2 I/Os (an average number!). The selection on rating and the projection on sname

are then applied on-the-fly at no additional cost. The total cost of the plan in Figure

13.8 is thus about 11 I/Os. In contrast, if we modify the naive plan in Figure 13.6 to

perform the additional selection on day together with the selection bid=100, the cost

remains at 501,000 I/Os.



Introduction to Query Optimization 373

13.4 POINTS TO REVIEW

The goal of query optimization is usually to avoid the worst evaluation plans and

find a good plan, rather than to find the best plan. To optimize an SQL query,

we first express it in relational algebra, consider several query evaluation plans for

the algebra expression, and choose the plan with the least estimated cost. A query

evaluation plan is a tree with relational operators at the intermediate nodes and

relations at the leaf nodes. Intermediate nodes are annotated with the algorithm

chosen to execute the relational operator and leaf nodes are annotated with the

access method used to retrieve tuples from the relation. Results of one operator

can be pipelined into another operator without materializing the intermediate

result. If the input tuples to a unary operator are pipelined, this operator is

said to be applied on-the-fly. Operators have a uniform iterator interface with

functions open, get next, and close. (Section 13.1)

A DBMS maintains information (called metadata) about the data in a special set

of relations called the catalog (also called the system catalog or data dictionary).

The system catalog contains information about each relation, index, and view.

In addition, it contains statistics about relations and indexes. Since the system

catalog itself is stored in a set of relations, we can use the full power of SQL to

query it and manipulate it. (Section 13.2)

Alternative plans can differ substantially in their overall cost. One heuristic is to

apply selections as early as possible to reduce the size of intermediate relations.

Existing indexes can be used as matching access paths for a selection condition. In

addition, when considering the choice of a join algorithm the existence of indexes

on the inner relation impacts the cost of the join. (Section 13.3)

EXERCISES

Exercise 13.1 Briefly answer the following questions.

1. What is the goal of query optimization? Why is it important?

2. Describe the advantages of pipelining.

3. Give an example in which pipelining cannot be used.

4. Describe the iterator interface and explain its advantages.

5. What role do statistics gathered from the database play in query optimization?

6. What information is stored in the system catalogs?

7. What are the benefits of making the system catalogs be relations?

8. What were the important design decisions made in the System R optimizer?

Additional exercises and bibliographic notes can be found at the end of Chapter 14.


